LP3985

LP3985 Micropower, 150mA Low-Noise Ultra Low-Dropout CMOS Voltage Regulator

Literature Number: SNVS087AB
Micropower, 150mA Low-Noise Ultra Low-Dropout CMOS Voltage Regulator

General Description

The LP3985 is designed for portable and wireless applications with demanding performance and space requirements. The LP3985 is stable with a small 1µF ±30% ceramic or high-quality tantalum output capacitor. The micro SMD requires the smallest possible PC board area - the total application circuit area can be less than 2.0mm x 2.5mm, a fraction of a 1206 case size.

The LP3985’s performance is optimized for battery powered systems to deliver ultra low noise, extremely low dropout voltage and low quiescent current. Regulator ground current increases only slightly in dropout, further prolonging the battery life.

An optional external bypass capacitor reduces the output noise without slowing down the load transient response. Fast startup time is achieved by utilizing an internal power-on circuit that actively pre-charges the bypass capacitor.

Power supply rejection is better than 50dB at low frequencies and starts to roll off at 1kHz. High power supply rejection is maintained down to low input voltage levels common to battery operated circuits.

The device is ideal for mobile phone and similar battery powered wireless applications. It provides up to 150mA, from a 2.5V to 6V input. The LP3985 consumes less than 1.5µA in disable mode and has fast turn-on time less than 200µs.

The LP3985 is available in a 5-bump thin micro SMD and a 5-pin SOT-23 package. Performance is specified for −40°C to +125°C junction temperature range and is available in 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V, 3.1V, 3.2V, 3.3V, 4.7V, 4.75V, 4.8V and 5.0V output voltages. For other output voltage options between 2.5V to 5.0V or for a dual LP3985, please contact a Texas Instruments sales office.

Key Specifications

- 2.5 to 6.0V input range
- 150mA guaranteed output
- 50dB PSRR at 1kHz @ \(V_{IN} = V_{OUT} + 0.2V \)
- \(\leq 1.5\mu A \) quiescent current when shut down
- Fast Turn-On time: 200µs (typ.)
- 100mV maximum dropout with 150mA load
- 30µVrms output noise (typ.) over 10Hz to 100kHz
- −40 to +125°C junction temperature range for operation
- 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V, 3.1V, 3.2V, 3.3V, 4.7V, 4.75V, 4.8V and 5.0V outputs standard

Features

- Miniature 5-I/O micro SMD and SOT-23-5 package
- Logic controlled enable
- Stable with ceramic and high quality tantalum capacitors
- Fast turn-on
- Thermal shutdown and short-circuit current limit

Applications

- CDMA cellular handsets
- Wideband CDMA cellular handsets
- GSM cellular handsets
- Portable information appliances

Typical Application Circuit

![Typical Application Circuit Diagram](image)

Note: Pin Numbers in parenthesis indicate micro SMD package.

* Optional Noise Reduction Capacitor.
Block Diagram

![Block Diagram](image)

Pin Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>* micro SMD</th>
<th>SOT</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{EN})</td>
<td>A1</td>
<td>3</td>
<td>Enable Input Logic, Enable High</td>
</tr>
<tr>
<td>GND</td>
<td>B2</td>
<td>2</td>
<td>Common Ground</td>
</tr>
<tr>
<td>V(_{OUT})</td>
<td>C1</td>
<td>5</td>
<td>Output Voltage of the LDO</td>
</tr>
<tr>
<td>V(_{IN})</td>
<td>C3</td>
<td>1</td>
<td>Input Voltage of the LDO</td>
</tr>
<tr>
<td>BYPASS</td>
<td>A3</td>
<td>4</td>
<td>Optional Bypass Capacitor for Noise Reduction</td>
</tr>
</tbody>
</table>

* The pin numbering scheme for the micro SMD package was revised in April 2002 to conform to JEDEC standard. Only the pin numbers were revised. No changes to the physical location of the inputs/outputs were made. For reference purposes, the obsolete numbering scheme had V\(_{EN}\) as pin 1, GND as pin 2, V\(_{OUT}\) as pin 3, V\(_{IN}\) as pin 4, and BYPASS as pin 5.

Connection Diagrams

SOT 23-5 Package (MF)

![Connection Diagram SOT 23-5](image)

Top View
See NS Package Number MF05A

5-Bump micro SMD Package (TLA05)

![Connection Diagram 5-Bump micro SMD](image)

Top View
See NS Package Number TLA05
Ordering Information

TL refers to 0.300mm bump size, 0.600mm height for micro SMD Package

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Grade</th>
<th>LP3985 Supplied as 250 Units, Tape and Reel</th>
<th>LP3985 Supplied as 3000 Units, Tape and Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>STD</td>
<td>LP3985ITL-2.5</td>
<td>LP3985ITLX-2.5</td>
</tr>
<tr>
<td>2.6</td>
<td>STD</td>
<td>LP3985ITL-2.6</td>
<td>LP3985ITLX-2.6</td>
</tr>
<tr>
<td>2.7</td>
<td>STD</td>
<td>LP3985ITL-2.7</td>
<td>LP3985ITLX-2.7</td>
</tr>
<tr>
<td>2.8</td>
<td>STD</td>
<td>LP3985ITL-2.8</td>
<td>LP3985ITLX-2.8</td>
</tr>
<tr>
<td>2.85</td>
<td>STD</td>
<td>LP3985ITL-285</td>
<td>LP3985ITLX-285</td>
</tr>
<tr>
<td>2.9</td>
<td>STD</td>
<td>LP3985ITL-2.9</td>
<td>LP3985ITLX-2.9</td>
</tr>
<tr>
<td>3.0</td>
<td>STD</td>
<td>LP3985ITL-3.0</td>
<td>LP3985ITLX-3.0</td>
</tr>
<tr>
<td>3.1</td>
<td>STD</td>
<td>LP3985ITL-3.1</td>
<td>LP3985ITLX-3.1</td>
</tr>
<tr>
<td>3.2</td>
<td>STD</td>
<td>LP3985ITL-3.2</td>
<td>LP3985ITLX-3.2</td>
</tr>
<tr>
<td>3.3</td>
<td>STD</td>
<td>LP3985ITL-3.3</td>
<td>LP3985ITLX-3.3</td>
</tr>
<tr>
<td>4.75</td>
<td>STD</td>
<td>LP3985ITL-4.75</td>
<td>LP3985ITLX-4.75</td>
</tr>
<tr>
<td>4.8</td>
<td>STD</td>
<td>LP3985ITL-4.8</td>
<td>LP3985ITLX-4.8</td>
</tr>
<tr>
<td>5.0</td>
<td>STD</td>
<td>LP3985ITL-5.0</td>
<td>LP3985ITLX-5.0</td>
</tr>
</tbody>
</table>

For SOT Package

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Grade</th>
<th>LP3985 Supplied as 1000 Units, Tape and Reel</th>
<th>LP3985 Supplied as 3000 Units, Tape and Reel</th>
<th>Package Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>STD</td>
<td>LP3985IM5-2.5</td>
<td>LP3985IM5X-2.5</td>
<td>LCSB</td>
</tr>
<tr>
<td>2.6</td>
<td>STD</td>
<td>LP3985IM5-2.6</td>
<td>LP3985IM5X-2.6</td>
<td>LCTB</td>
</tr>
<tr>
<td>2.7</td>
<td>STD</td>
<td>LP3985IM5-2.7</td>
<td>LP3985IM5X-2.7</td>
<td>LCUB</td>
</tr>
<tr>
<td>2.8</td>
<td>STD</td>
<td>LP3985IM5-2.8</td>
<td>LP3985IM5X-2.8</td>
<td>LCJB</td>
</tr>
<tr>
<td>2.85</td>
<td>STD</td>
<td>LP3985IM5-285</td>
<td>LP3985IM5X-285</td>
<td>LCXB</td>
</tr>
<tr>
<td>2.9</td>
<td>STD</td>
<td>LP3985IM5-2.9</td>
<td>LP3985IM5X-2.9</td>
<td>LCYB</td>
</tr>
<tr>
<td>3.0</td>
<td>STD</td>
<td>LP3985IM5-3.0</td>
<td>LP3985IM5X-3.0</td>
<td>LCRB</td>
</tr>
<tr>
<td>3.1</td>
<td>STD</td>
<td>LP3985IM5-3.1</td>
<td>LP3985IM5X-3.1</td>
<td>LCZB</td>
</tr>
<tr>
<td>3.2</td>
<td>STD</td>
<td>LP3985IM5-3.2</td>
<td>LP3985IM5X-3.2</td>
<td>LDPB</td>
</tr>
<tr>
<td>3.3</td>
<td>STD</td>
<td>LP3985IM5-3.3</td>
<td>LP3985IM5X-3.3</td>
<td>LDOB</td>
</tr>
<tr>
<td>4.7</td>
<td>STD</td>
<td>LP3985IM5-4.7</td>
<td>LP3985IM5X-4.7</td>
<td>LDRB</td>
</tr>
<tr>
<td>5.0</td>
<td>STD</td>
<td>LP3985IM5-5.0</td>
<td>LP3985IM5X-5.0</td>
<td>LDSB</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings *(Note 1, Note 2)*

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

- **V\textsubscript{IN}, V\textsubscript{EN}**
 - −0.3 to 6.5V
- **V\textsubscript{OUT}**
 - −0.3 to (V\textsubscript{IN}+0.3) ≤ 6.5V
- **Junction Temperature**
 - 150°C
- **Storage Temperature**
 - −65°C to +150°C
- **Lead Temp.**
 - 235°C
- **Pad Temp. (Note 3)**
 - 235°C

Maximum Power Dissipation

- **SOT23-5 (Note 4)**
 - 364mW
- **micro SMD (Note 4)**
 - 314mW

ESD Rating *(Note 5)*

- **Human Body Model**
 - 2kV
- **Machine Model**
 - 150V

Operating Ratings *(Note 1, Note 2)*

- **V\textsubscript{IN}**
 - 2.5 to 6V
- **V\textsubscript{EN}**
 - 0 to (V\textsubscript{IN}+0.3) ≤ 6V
- **Junction Temperature**
 - −40°C to +125°C
- **Thermal Resistance**
 - \(\theta\textsubscript{JA} (\text{SOT23-5})\)
 - 220°C/W
 - \(\theta\textsubscript{JA} (\text{micro SMD})\)
 - 255°C/W

- **Maximum Power Dissipation**
 - **SOT23-5 (Note 6)**
 - 250mW
 - **micro SMD (Note 6)**
 - 216mW

Electrical Characteristics

Unless otherwise specified: V\textsubscript{IN} = V\textsubscript{OUT(nom)} + 0.5V, C\textsubscript{IN} = 1 µF, I\textsubscript{OUT} = 1mA, C\textsubscript{OUT} = 1 µF, C\textsubscript{BYPASS} = 0.01µF. Typical values and limits appearing in standard typeface are for \(T\textsubscript{J} = 25°C\). Limits appearing in **boldface type** apply over the entire junction temperature range for operation, −40°C to +125°C. *(Note 7, Note 8)*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta V\textsubscript{OUT})</td>
<td>Output Voltage Tolerance</td>
<td>(I\textsubscript{OUT} = 1mA)</td>
<td><2 >2 <3 >3</td>
<td>% of V\textsubscript{OUT(nom)}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line Regulation Error</td>
<td>(V\textsubscript{IN} = (V\textsubscript{OUT(nom)} + 0.5V)) to 6.0V, For 4.7 to 5.0 options</td>
<td><−0.19 >−0.19</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{For all other options})</td>
<td><−0.1 >−0.1</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load Regulation Error (Note 9)</td>
<td>(I\textsubscript{OUT} = 1\text{ mA to }150\text{ mA}) LP3985IM5 (SOT23-5)</td>
<td>0.0025</td>
<td>0.005</td>
<td>%/mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LP3985 (micro SMD)</td>
<td>0.0004</td>
<td>0.002</td>
<td>%/mA</td>
</tr>
<tr>
<td></td>
<td>Output AC Line Regulation</td>
<td>(V\textsubscript{IN} = V\textsubscript{OUT(nom)} + 1V, I\textsubscript{OUT} = 150\text{ mA (Figure 1)})</td>
<td>1.5</td>
<td>mV\textsubscript{P-P}</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>(V\textsubscript{IN} = V\textsubscript{OUT(nom)} + 0.2V, f = 1\text{ kHz, } I\textsubscript{OUT} = 50\text{ mA (Figure 2)})</td>
<td>50</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>(I\text{Q})</td>
<td>Quiescent Current</td>
<td>(V\textsubscript{EN} = 1.4V, I\textsubscript{OUT} = 0\text{ mA}) For 4.7 to 5.0 options</td>
<td>100</td>
<td>165</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For all other options</td>
<td>85</td>
<td>150</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V\textsubscript{EN} = 1.4V, I\textsubscript{OUT} = 0\text{ to }150\text{ mA}) For 4.7 to 5.0 options</td>
<td>155</td>
<td>250</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For all other options</td>
<td>140</td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V\textsubscript{EN} = 0.4V)</td>
<td>0.003</td>
<td>1.5</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>Dropout Voltage (Note 10)</td>
<td>(I\textsubscript{OUT} = 1\text{ mA})</td>
<td>0.4</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I\textsubscript{OUT} = 50\text{ mA})</td>
<td>20</td>
<td>35</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I\textsubscript{OUT} = 100\text{ mA})</td>
<td>45</td>
<td>70</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I\textsubscript{OUT} = 150\text{ mA})</td>
<td>60</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>(I\textsub{SC})</td>
<td>Short Circuit Current Limit</td>
<td>Output Grounded (Steady State)</td>
<td>600</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I\text{OUT(PK)})</td>
<td>Peak Output Current</td>
<td>(V\textsubscript{OUT} \geq V\textsubscript{OUT(nom)} \times 5%)</td>
<td>550</td>
<td>300</td>
<td>mA</td>
</tr>
</tbody>
</table>
The recommended capacitor type is X7R to meet the full device temperature spec of -40ºC to 125ºC. See the capacitor section in Application Notes. The full range of operating conditions for the capacitor in the application should be considered during device selection to ensure this minimum capacitance.

Note 4: The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formula: \(P_D = (T_J - T_A) / \theta_{JA} \), where \(T_J \) is the junction temperature, \(T_A \) is the ambient temperature, and \(\theta_{JA} \) is the junction-to-ambient thermal resistance. The 364mW rating for SOT23-5 appearing under Absolute Maximum Ratings results from substituting the Absolute Maximum junction temperature, 150ºC, for \(T_J \), 70ºC for \(T_A \), and 220°/W for \(\theta_{JA} \). More power can be dissipated safely at ambient temperatures below 70ºC. Less power can be dissipated at ambient temperatures above 70ºC. The Absolute Maximum power dissipation can be increased by 4.5mW for each degree below 70ºC, and it must be derated by 4.5mW for each degree above 70ºC.

Note 5: The human body model is 100pF discharged through 1.5kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 6: Like the Absolute Maximum power dissipation, the maximum power dissipation for operation depends on the ambient temperature. The 250mW rating for SOT23-5 appearing under Operating Ratings results from substituting the maximum junction temperature for operation, 125ºC, for \(T_J \), 70ºC for \(T_A \), and 220°/W for \(\theta_{JA} \). More power can be dissipated safely at ambient temperatures below 70ºC. Less power can be dissipated at ambient temperatures above 70ºC. The maximum power dissipation for operation can be increased by 4.5mW for each degree below 70ºC, and it must be derated by 4.5mW for each degree above 70ºC.

Note 7: All limits are guaranteed. All electrical characteristics having room-temperature limits are tested during production with \(T_J = 25ºC \) or correlated using Statistical Quality Control (SQC) methods. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

Note 8: The target output voltage, which is labeled \(V_{OUT(nom)} \), is the desired voltage option.

Note 10: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. This specification does not apply for input voltages below 2.5V.

Note 11: Turn-on time is time measured between the enable input just exceeding \(V_{IN} \) and the output voltage just reaching 95% of its nominal value.

Note 12: The output noise varies with output voltage option. The 30µVrms is measured with 2.5V voltage option. To calculate an approximated output noise for other options, use the equation: \(30\mu V_{rms} \times (X/2.5) \), where \(X \) is the voltage option value.

Recommended Output Capacitor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Nominal Value</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{OUT})</td>
<td>Output Capacitor</td>
<td>Capacitance (Note 13)</td>
<td>1.0</td>
<td>0.7</td>
<td>µF</td>
</tr>
</tbody>
</table>

Note 13: The minimum value of capacitance for stability and correct operation is 0.7µF. The Capacitor tolerance should be ± 30% or better over the temperature range. The full range of operating conditions for the capacitor in the application should be considered during device selection to ensure this minimum capacitance specification is met. The recommended capacitor type is X7R to meet the full device temperature spec of ~40ºC to 125ºC. See the capacitor section in Application Notes.
Timing Diagrams

FIGURE 1. Line Transient Input Test Signal

\[V_{IN} = V_{OUT} + 1 V \]

FIGURE 2. PSRR Input Test Signal

\[V_{IN} = V_{OUT} + 1 V \]

Typical Performance Characteristics

Unless otherwise specified, \(C_{IN} = C_{OUT} = 1 \mu F \) Ceramic, \(C_{BYPASS} = 0.01 \mu F \), \(V_{IN} = V_{OUT} + 0.2 V \), \(T_A = 25^\circ C \), Enable pin is tied to \(V_{IN} \).

Output Voltage Change vs Temperature

\[V_{IN} = V_{OUT} + 0.5 V \]

Dropout Voltage vs Load Current

- \(T_J = 25^\circ C \)
- \(T_J = -40^\circ C \)
- \(T_J = 125^\circ C \)
Ground Current vs Load Current

Ground Current vs V_{IN} @ 25°C

Ground Current vs V_{IN} @ −40°C

Ground Current vs V_{IN} @ 125°C

Short Circuit Current (micro SMD)
Output Noise Spectral Density

Ripple Rejection ($V_{IN} = V_{OUT} + 0.2V$)

Ripple Rejection ($V_{IN} = V_{OUT} + 1V$)

Ripple Rejection ($V_{IN} = V_{OUT} + 5.0V$)

Startup Time ($V_{IN} = V_{OUT} + 0.2V$)

Startup Time ($V_{IN} = 4.2V$)
Load Transient Response ($V_{IN} = 3.2V$)

Enable Response ($V_{IN} = V_{OUT} + 0.2V$)

Enable Response ($V_{IN} = 4.2V$)
Application Hints

EXTERNAL CAPACITORS
Like any low-dropout regulator, the LP3985 requires external capacitors for regulator stability. The LP3985 is specifically designed for portable applications requiring minimum board space and smallest components. These capacitors must be correctly selected for good performance.

INPUT CAPACITOR
An input capacitance of \(\approx 1 \mu F \) is required between the LP3985 input pin and ground (the amount of the capacitance may be increased without limit). This capacitor must be located a distance of not more than 1cm from the input pin and returned to a clean analog ground. A ceramic capacitor is recommended although a good quality tantalum or film capacitor may be used at the input.

Important: Tantalum capacitors can suffer catastrophic failures due to surge current when connected to a low-impedance source of power (like a battery or a very large capacitor). If a tantalum capacitor is used at the input, it must be guaranteed by the manufacturer to have a surge current rating sufficient for the application.

OUTPUT CAPACITOR
Correct selection of the output capacitor is important to ensure stable operation in the intended application. The output capacitor must meet all the requirements specified in the recommended capacitor table over all conditions in the application. These conditions include DC-bias, frequency and temperature. Unstable operation will result if the capacitance drops below the minimum specified value. (See the next section Capacitor Characteristics).

The LP3985 is designed specifically to work with very small ceramic output capacitors. A 1.0µF ceramic capacitor (dielectric type X7R) with ESR between 5mΩ to 500mΩ is suitable in the LP3985 application circuit. X5R capacitors may be used but have a narrower temperature range. With these and other capacitor types (Y5V, Z6U) that may be used, selection is dependant on the range of operating conditions and temperature range for that application. (see section on Capacitor Characteristics).
It may also be possible to use tantalum or film capacitors at the output, but these are not as attractive for reasons of size and cost (see next section Capacitor Characteristics).

It is also recommended that the output capacitor be placed within 1cm from the output pin and returned to a clean ground line.

CAPACITOR CHARACTERISTICS

The LP3985 is designed to work with ceramic capacitors on the output to take advantage of the benefits they offer: for capacitance values in the range of 1µF to 4.7µF range, ceramic capacitors are the smallest, least expensive and have the lowest ESR values (which makes them best for eliminating high frequency noise). The ESR of a typical 1µF ceramic capacitor is in the range of 20mΩ to 40mΩ, which easily meets the ESR requirement for stability by the LP3985.

For both input and output capacitors careful interpretation of the capacitor specification is required to ensure correct device operation. The capacitor value can change greatly dependant on the conditions of operation and capacitor type.

In particular the output capacitor selection should take account of all the capacitor parameters to ensure that the specification is met within the application. Capacitance value can vary with DC bias conditions as well as temperature and frequency of operation. Capacitor values will also show some decrease over time due to aging. The capacitor parameters are also dependant on the particular case size with smaller sizes giving poorer performance figures in general. As an example Figure 3 shows a typical graph showing a comparison of capacitor case sizes in a Capacitance vs DC Bias plot. As shown in the graph, as a result of the DC Bias condition the capacitance value may drop below the minimum capacitance value given in the recommended capacitor table (0.7µF in this case). Note that the graph shows the capacitance out of spec for the 0402 case size capacitor at higher bias voltages. It is therefore recommended that the capacitor manufacturers’ specifications for the nominal value capacitor are consulted for all conditions as some capacitor sizes (e.g. 0402) may not be suitable in the actual application.

The ceramic capacitor’s capacitance can vary with temperature. The capacitor type X7R, which operates over a temperature range of −55°C to +125°C, will only vary the capacitance to within ±15%. The capacitor type X5R has a similar tolerance over a reduced temperature range of −55°C to +85°C. Most large value ceramic capacitors (≥ 2.2µF) are manufactured with ZSU or Y5V temperature characteristics. Their capacitance can drop by more than 50% as the temperature goes from 25°C to 85°C. Therefore X7R is recommended over ZSU and Y5V in applications where the ambient temperature will change significantly above or below 25°C.

The ceramic capacitor's capacitance can vary with temperature. The capacitor type X7R, which operates over a temperature range of −55°C to +125°C, will only vary the capacitance to within ±15%. The capacitor type X5R has a similar tolerance over a reduced temperature range of −55°C to +85°C. Most large value ceramic capacitors (≥ 2.2µF) are manufactured with ZSU or Y5V temperature characteristics. Their capacitance can drop by more than 50% as the temperature goes from 25°C to 85°C. Therefore X7R is recommended over ZSU and Y5V in applications where the ambient temperature will change significantly above or below 25°C.

Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more expensive when comparing equivalent capacitance and voltage ratings in the 1µF to 4.7µF range.

Another important consideration is that tantalum capacitors have higher ESR values than equivalent size ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic capacitor with the same ESR value. It should also be noted that the ESR of a typical tantalum will increase about 2:1 as the temperature goes from 25°C down to −40°C, so some guard band must be allowed.

NOISE BYPASS CAPACITOR

Connecting a 0.01µF capacitor between the C\textsubscript{BYPASS} pin and ground significantly reduces noise on the regulator output. This cap is connected directly to a high impedance node in the band gap reference circuit. Any significant loading on this node will cause a change on the regulated output voltage. For this reason, DC leakage current through this pin must be kept as low as possible for best output voltage accuracy.

The types of capacitors best suited for the noise bypass capacitor are ceramic and film. High-quality ceramic capacitors with either NPO or COG dielectric typically have very low leakage. Polypropolene and polycarbonate film capacitors are available in small surface-mount packages and typically have extremely low leakage current.

Unlike many other LDO’s, addition of a noise reduction capacitor does not effect the load transient response of the device.

NO-LOAD STABILITY

The LP3985 will remain stable and in regulation with no external load. This is specially important in CMOS RAM keep-alive applications.

ON/OFF INPUT OPERATION

The LP3985 is turned off by pulling the V\textsubscript{IN} pin low, and turned on by pulling it high. If this feature is not used, the V\textsubscript{IN} pin should be tied to V\textsubscript{IL} to keep the regulator output on at all time.

To assure proper operation, the signal source used to drive the V\textsubscript{IN} input must be able to swing above and below the specified turn-on/off voltage thresholds listed in the Electrical Characteristics section under V\textsubscript{IL} and V\textsubscript{IH}.

FAST ON-TIME

The LP3985 output is turned on after V\textsubscript{ref} voltage reaches its final value (1.23V nominal). To speed up this process, the noise reduction capacitor at the bypass pin is charged with an internal 70µA current source. The current source is turned off when the bandgap voltage reaches approximately 95% of its final value. The turn on time is determined by the time constant of the bypass capacitor. The smaller the capacitor value, the shorter the turn on time, but less noise gets reduced. As a result, turn on time and noise reduction need to be taken into design consideration when choosing the value of the bypass capacitor.

FIGURE 3. Graph Showing A Typical Variation in Capacitance vs DC Bias

The ceramic capacitor’s capacitance can vary with temperature. The capacitor type X7R, which operates over a temperature range of −55°C to +125°C, will only vary the capacitance to within ±15%. The capacitor type X5R has a similar tolerance over a reduced temperature range of −55°C to +85°C. Most large value ceramic capacitors (≥ 2.2µF) are manufactured with ZSU or Y5V temperature characteristics. Their capacitance can drop by more than 50% as the temperature goes from 25°C to 85°C. Therefore X7R is recommended over ZSU and Y5V in applications where the ambient temperature will change significantly above or below 25°C.

Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more expensive when comparing equivalent capacitance and voltage ratings in the 1µF to 4.7µF range.

Another important consideration is that tantalum capacitors have higher ESR values than equivalent size ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic capacitor with the same ESR value. It should also be noted that the ESR of a typical tantalum will increase about 2:1 as the temperature goes from 25°C down to −40°C, so some guard band must be allowed.

NOISE BYPASS CAPACITOR

Connecting a 0.01µF capacitor between the C\textsubscript{BYPASS} pin and ground significantly reduces noise on the regulator output. This cap is connected directly to a high impedance node in the band gap reference circuit. Any significant loading on this node will cause a change on the regulated output voltage. For this reason, DC leakage current through this pin must be kept as low as possible for best output voltage accuracy.

The types of capacitors best suited for the noise bypass capacitor are ceramic and film. High-quality ceramic capacitors with either NPO or COG dielectric typically have very low leakage. Polypropolene and polycarbonate film capacitors are available in small surface-mount packages and typically have extremely low leakage current.

Unlike many other LDO’s, addition of a noise reduction capacitor does not effect the load transient response of the device.

NO-LOAD STABILITY

The LP3985 will remain stable and in regulation with no external load. This is specially important in CMOS RAM keep-alive applications.

ON/OFF INPUT OPERATION

The LP3985 is turned off by pulling the V\textsubscript{IN} pin low, and turned on by pulling it high. If this feature is not used, the V\textsubscript{IN} pin should be tied to V\textsubscript{IL} to keep the regulator output on at all time.

To assure proper operation, the signal source used to drive the V\textsubscript{IN} input must be able to swing above and below the specified turn-on/off voltage thresholds listed in the Electrical Characteristics section under V\textsubscript{IL} and V\textsubscript{IH}.

FAST ON-TIME

The LP3985 output is turned on after V\textsubscript{ref} voltage reaches its final value (1.23V nominal). To speed up this process, the noise reduction capacitor at the bypass pin is charged with an internal 70µA current source. The current source is turned off when the bandgap voltage reaches approximately 95% of its final value. The turn on time is determined by the time constant of the bypass capacitor. The smaller the capacitor value, the shorter the turn on time, but less noise gets reduced. As a result, turn on time and noise reduction need to be taken into design consideration when choosing the value of the bypass capacitor.
micro SMD MOUNTING
The micro SMD package requires specific mounting techniques which are detailed in Texas Instruments Application Note (AN-1112). Referring to the section Surface Mount Technology (SMT) Assembly Considerations, it should be noted that the pad style which must be used with the 5-bump package is NSMD (non-solder mask defined) type.
For best results during assembly, alignment ordinals on the PC board may be used to facilitate placement of the micro SMD device.

micro SMD LIGHT SENSITIVITY
Exposing the micro SMD device to direct sunlight will cause mis-operation of the device. Light sources such as halogen lamps can effect electrical performance if brought near to the device.
The wavelengths which have most detrimental effect are reds and infra-reds, which means that the fluorescent lighting used inside most buildings has very little effect on performance. A micro SMD test board was brought to within 1cm of a fluorescent desk lamp and the effect on the regulated output voltage was negligible, showing a deviation of less than 0.1% from nominal.
Physical Dimensions inches (millimeters) unless otherwise noted

5-Lead Small Outline Package (MF)
NS Package Number MF05A

CONTROLLING DIMENSION IS INCH
VALUES IN [] ARE MILLIMETERS
DIMENSIONS IN [] FOR REFERENCE ONLY

The dimensions for X1, X2 and X3 are as given:
X1 = 1.006 ± 0.03mm
X2 = 1.463 ± 0.03mm
X3 = 0.6 ± 0.075mm
Notes

TP/NATIONAL INTERIM IMPORTANT NOTICE

Texas Instruments has purchased National Semiconductor. As of Monday, September 26th, and until further notice, products sold or advertised under the National Semiconductor name or logo, and information, support and interactions concerning such products, remain subject to the preexisting National Semiconductor standard terms and conditions of sale, terms of use of website, and Notices (and/or terms previously agreed in writing with National Semiconductor, where applicable) and are not subject to any differing terms and notices applicable to other TI components, sales or websites. To the extent information on official TI and National websites and business social networking media, etc., pertains to both TI and National-branded products, both companies’ instructions, warnings and limitations in the above-referenced terms of use apply.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>www.ti.com/lprf</td>
</tr>
</tbody>
</table>

www.ti.com/energy www.ti.com/computer-apps
www.ti.com/e2e-community-home-page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright© 2011 Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated